
UPS File Format Speci�cation

April 18, 2008

Contents

1 Introduction 1

2 Advantages 2

3 File Structure 2
3.1 Signature . 2
3.2 File Sizes . 2
3.3 Patch Blocks . 2
3.4 Checksums . 3
3.5 Encoding Pointers . 3

1 Introduction

The goal of UPS is di�erent from that of NINJA2, or xdelta. It is designed to
be a direct replacement for IPS. The di�culty of implementing it is equal to
that of IPS.

UPS supports any �le size, though the binary is currently limited to 4GB
�les due to libc limitations. Because of a condensed pointer encoding method,
the maximum �le size is inde�nite. UPS is completely future proof in that
regard.

UPS is designed for patching �les. It will not perform advanced clipping
methods to move data around and restructure �les like xdelta will. However, it
is possible for anyone to implement UPS, whereas there has only ever been one
xdelta implementation. The complexity of such implementations proves itself
to be too di�cult for easy implementation or integration. If these features are
desired, the alternatives of xdelta and bsdi� already exist.

UPS doesn't compete with NINJA, they will complement each other. NINJA3
will use UPS internally as the raw patch data, and will handle detection and
support for each individual system, as needed. NINJA3 behaves as a container,
much like the relationship between OGG and Vorbis.

1

The reason UPS does not include compression is because ZIP, RAR, and 7z
have and will always do it better. It is better to just have a larger patch han-
dled by external compression. Most emulators support patches inside archives
regardless. This furthers the key idea of easy implementation.

Finally, UPS is a �nalized spec. Patches created will work with all future
versions.

2 Advantages

• simple �le format, easy for anyone to implement.

• automatic bi-directional patching. The same patch can both patch and
unpatch a game.

• CRC32 checksums on the original, modi�ed and patch �les guarantees
patches will not apply to the incorrect �les

• in�nite �le sizes. No more 16MB limitation as with IPS.

• Windows / Linux GUI patchers, core library written in ISO C++9x.

• UPS is public domain

3 File Structure

3.1 Signature

• 4 bytes: �UPS1�

3.2 File Sizes

These are exact �le sizes, variable length-encoded.

• Input �le size

• Output �le size

3.3 Patch Blocks

Blocks of changes are stored consecutively until EOF - 12 is reached.

• Relative Di�erence O�set: A variable length-encoded pointer describing
the current di�erence between the current input, output �le pointer and
the next di�erent byte.

• Input ^ Output: The XOR (exclusive or), of the di�ering input byte and
the output byte. Data is stored as XOR to allow for bi-linear patching; to
revert back to the original �le with the same patch by applying it again.

2

• If reading past input �le EOF, XOR with 0x00

• Terminating byte: �0x00�

3.4 Checksums

Values should be veri�ed when applying the UPS patch. This ensures the in-
tegrity of the patch itself, and that the patch is being applied to the correct
�le.

• 4 byte Input �le CRC32 checksum

• 4 byte Output �le CRC32 checksum

• 4 byte Patch CRC32 checksum, excluding this checksum data.

3.5 Encoding Pointers

Pseudo code:

def encode(uint64_t offset) {

loop {

uint64_t x = offset bit-wise and 0x7f

offset = offset right bit shift 7

if(offset == 0) {

zwrite(0x80 bit-wise or x);

break;

}

zwrite(x);

offset = offset - 1;

}

}

This work is licensed under the Creative Commons Attribution - Non-
commercial - No Derivative Works License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/; or,
(b) send a letter to Creative Commons, 171 2nd Street, Suite 300,
San Francisco, California, 94105, USA.

3

